
Name and SCIPER: ME-429, Quiz 2, 2025-04-30

Problem 1. Behavioral strategies (4 points)
We aim to compute the behavioral saddle-point equilibrium of the zero-sum extensive form game shown below.

a) Verify that (
[ 2

3
1
3

]
,
[ 1

6
5
6

]
) is a mixed-strategy equilibrium of

[
1 3
6 2

]
. What is the value of the game? (2 points)

b) Determine optimal strategy of player 2 (maximizer) at J2. (0.5 point)

c) Using the above two steps, determine the mixed strategy of player 1 at I1 and the strategy of player 2 for
each of his information sets to characterize the behavioral saddle-point equilibrium of the game (1.5 points).
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Solution:

a) we can check whether any player has any incentive in deviating. The rewards for player 2 are[ 2
3

1
3
] [1 3

6 2

]
=
[ 2+6

3
6+2

3
]

=
[ 8

3
8
3

]
No matter which policies the second player chooses, the reward is 8

3 . For player 1 we have[
1 3
6 2

] [ 1
6
5
6

]
=
[ 1+15

6
6+10

6
]

=
[ 8

3
8
3
]

Also the first player has no incentive in chaning the policy. The value of the game is 8
3 .

b) The optimal strategy of player 2 (maximizer) at J2 is to always play S, thus
[
0
1

]
.

c) Player 1 has no incentive in playing C, as the reward would be 7, bigger than any reward that could obtain
by playing A or B. The probability with which should play A or B are the one provided in question a, as we
proved. Thus, its mixed strategy is:

[ 2
3

1
3 1

]⊤. Player 2 should use the mixed strategy
[ 1

6
5
6
]⊤ in J1

and
[
0 1

]⊤ in J2.

Problem 2. A zero-sum LQ game (7 points)
Consider a zero-sum linear quadratic game with two agents over two time steps. The state dynamics is

xt+1 = f (xt , ut , wt) = 1
2xt + ut + wt , ∀t = 0, 1,

where ut ∈ R and wt ∈ R denote the control actions of the minimizer and the maximizer, respectively. The cost
to optimize is (x2 − T )2 + u2

0 + u2
1 − 2w2

0 − 2w2
1 . Our aim is to compute the feedback Nash equilibrium strategies

over two time steps t = 0, 1, namely, σt : R → R, for the minimizer, and γt : R → R for the maximizer.

a) We will use the dynamic programming approach. Given V2(x) = (x − T )2, complete the missing entries in
the backward iteration for determining V1(x), namely, the cost-to-go at time 1. (1 point)

V1(x) = min
u∈R

max
?

[
u2 − 2w2 + V? (f (x, u, w))

]
︸ ︷︷ ︸

J(x,u,w)

(1)

1
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b) Now, using the dynamics, write the expression for J(x, u, w). (1 point)

c) Observe that J(x, u, w) is convex and differentiable in u ∈ R and concave and differentiable in w ∈ R. Thus,
explain how you would determine the minu∈R J(x, u, w) and the maxw∈R J(x, u, w). (.5 point)

d) Compute the feedback Nash equilibrium strategies at time t = 1 putting the steps above together. You
should obtain a pair of affine strategies σ1(x) = kux + bu and γ1(x) = kwx + bw . (2 points) You may use the
fact that the inverse of a 2 × 2 matrix is given as:[

a b
c d

]−1
= 1

ad − bc

[
d −c
−b a

]
.

e) Using the strategies derived, compute the cost-to-go function V1(x). If you could not derive the explicit form
of the strategies, you may substitute the affine strategies symbolically and continue. (1 point)

f) Now, write the backward iteration for computing V0(x). Would σ0(x), γ0(x) be also affine? If so, would they
have the same linear and offset terms (ku, kw , bu, bw )? (1.5 point)

Solution:

a) The missing entries are w ∈ R and 2:

V1(x) = min
u∈R

max
w∈R

[
u2 − 2w2 + V2 (f (x, u, w))

]
.

b) The expression of J(x, u, w) is

J(x, u, w) = u2 − 2w2 +
(

1
2x + u + w − T

)2
.

c) To determine the minimum and the maximum, we can take the derivatives of the cost function with respect
to the two agents control actions and set it equal to zero.

d) To compute the feedback Nash equilibrium, first we take the derivatives of the cost function with respect to
the two agents control actions and we set it equal to zero:

∂J(x0, u0, u1, w0, w1)
∂u1

=2(1
2x1 + u1 + w1 − T ) + 2u1 = 0

∂J(x0, u0, u1, w0, w1)
∂w1

=2(1
2x1 + u1 + w1 − T ) − 4w1 = 0.

We can write them in a matrix form: [
4 2
2 −2

] [
u1
w1

]
=
[
−1 2
−1 2

] [
x1
T

]
For the matrix to be invertible ad − bc needs to be different from zero. In our case we have

ad − bc = 4 ∗ (−2) − 2 ∗ 2 = −12.

We can then compute u1 and w1:[
u1
w1

]
= − 1

12

[
−2 −2
−2 4

] [
−1 2
−1 2

] [
x1
T

]
= 1

12

[
4 −8
−2 4

] [
x1
T

]
Thus, the Nash equilibrium policies are:

u1 =
[
− 1

3
2
3
] [x1

T

]
,

w1 =
[ 1

6 − 1
3
] [x1

T

]
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e) The cost to go is

V1(x) =
(

1
2x − 1

3x + 2
3T + 1

6x − 1
3T − T

)2
+
(
−1

3x + 2
3T

)2
−

(
1
6x − 1

3T
)2

= 7
36(x − 2T )2.

f) To compute V0(x) we need to solve

V0(x) = min
u∈R

max
w∈R

[
u2 − 2w2 + V1 (f (x, u, w))

]
= min

u∈R
max
w∈R

[
u2 − 2w2 + 7

36

(
1
2x + u + w − 2T

)2
]

.

To compute the Nash equilibrium, we need to take the derivatives with respect to u and to w. We would
obtain two equations linear in all the terms. Thus, the solution for u and w would still be linear. However,
the values of ku, kw , bu, bw ) are going to differ from the previous ones we computed.

3
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Problem 3. Shortest path game (9 points + 1 bonus)
Alice and Bob play the following dynamic game: A token is moved along a directed graph G with nodes {s1, s2, ... , s6}
that represent the state of the game. At time t = 0, the token is placed at s1. Edges are associated with costs,
and we let cij ∈ R>0 denote the cost of the directed edge from si to sj .
Alice and Bob have the same state-dependent action sets Us = Vs. Namely, for each node s, we have Us = Vs =
N (s) where N (s) is the set of nodes v for which there is an edge from s to v. For odd i, the token transitions to
the node determined by Alice’s action u ∈ Usi ; then Alice incurs cost cij , and Bob incurs no cost. Conversely, for
even i, the token transitions to the node determined by Bob’s action v ∈ Vsi ; then Bob incurs cost cij , and Alice
incurs no cost. If the token is at s6, it stays there and the cost is 0 for both players. The game ends at t = 5.
Figure 1 shows the graph G. Both Alice and Bob are assumed to be cost minimizers.

s1 s2

s3 s4

s5

s6

4

3
3

5

2
1

2

4

2

Figure 1

For j ∈ {1, 2, ... , 6} and t ∈ {0, 1, ... , 5}, we define VA
t (sj) as Alice’s cost for the token to reach s6 within at most

t steps, assuming each player acts optimally with respect to her/his total cost). The respective cost incurred by
Bob is VB

t (sj). If s6 is not reachable from sj within at most t steps, we set the respective value to ∞.

a) Initializing VA
0 (s) = 0 for s = s6 and VA

0 (s) = ∞ for s ∈ {s1, ... , s5}, we can use dynamic programming to
determine VA

t (s) for t = 1, 2, ... , 5, and s ∈ {s1, ... , s5} as follows.

VA
t (sj) =


min

sk∈N (sj )

{
cjk + VA

t−1(sk)
}

, if j is odd;

VA
t−1(sk⋆ ), otherwise, where k⋆ = arg min

sk∈N (sj )

{
cjk + VB

t−1(sk)
}

,

Write down the respective expression for determining VB
t (sj). (1 point)

Solution:
We can write

VA
t (sj) =


min

sk∈N (sj )

{
cjk + VA

t−1(sk)
}

, if j is odd;

VA
t−1(sk⋆ ), otherwise, where k⋆ = arg min

sk∈N (sj )

{
cjk + VB

t−1(sk)
}

,

and similarly,

VB
t (sj) =


min

sk∈N (sj )

{
cjk + VB

t−1(sk)
}

, if j is even;

VB
t−1(sk⋆ ), otherwise, where k⋆ = arg min

sk∈N (sj )

{
cjk + VA

t−1(sk)
}

,

b) Let u⋆
t (s) and v⋆

t (s) be the action Alice and Bob must take in order to achieve cost VA
t (s) and VB

t (s), respec-
tively. In Table 1 (next page), the box corresponding to state s and time t should contain (VA

t (s), VB
t (s)) at
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s t 0 1 2 3 4 5

s1
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(4, 4). . . . . .
(s2,−)

( , ). . . . . . .
( , )

( , ). . . . . . .
( , )

s2
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

( , ). . . . . . .
( , )

( , ). . . . . . .
( , )

(4, 3). . . . . .
(−, s4)

(4, 3). . . . . .
(−, s4)

s3
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(2, 2). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

s4
(∞,∞). . . . . . .
(−,−)

( , ). . . . . . .
( , )

( , ). . . . . . .
( , )

(4, 1). . . . . .
(−, s5)

(4, 1). . . . . .
(−, s5)

(4, 1). . . . . .
(−, s5)

s5
(∞,∞). . . . . . .
(−,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

s6
(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

Table 1

the top, and (u∗
t (s), v∗

t (s)) at the bottom (where “−” means this player can choose any action). Fill out the 6
missing boxes. (6 points)
Solution:

s t 0 1 2 3 4 5

s1
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(4, 4). . . . . .
(s2,−)

(8, 3). . . . . .
(s2,−)

(8, 3). . . . . .
(s2,−)

s2
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(0, 4). . . . . .
(−, s4)

(4, 3). . . . . .
(−, s4)

(4, 3). . . . . .
(−, s4)

(4, 3). . . . . .
(−, s4)

s3
(∞,∞). . . . . . .
(−,−)

(∞,∞). . . . . . .
(−,−)

(2, 2). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

(6, 1). . . . . .
(s4,−)

s4
(∞,∞). . . . . . .
(−,−)

(0, 2). . . . . .
(−, s6)

(4, 1). . . . . .
(−, s5)

(4, 1). . . . . .
(−, s5)

(4, 1). . . . . .
(−, s5)

(4, 1). . . . . .
(−, s5)

s5
(∞,∞). . . . . . .
(−,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

(4, 0). . . . . .
(s6,−)

s6
(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)

(0, 0). . . . . .
(−,−)
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c) Write down a strategy γA for Alice and γB for Bob such that (γA, γB) is a subgame perfect equilibrium of the
above game. Hint: Look at the last column of the table above. (2 points)
Solution:
Alice’s strategy γA must satisfy

γA(s1) = s2,
γA(s3) = s4,
γA(s5) = s6,

and Bob’s strategy γB must satisfy

γB(s2) = s4,
γB(s4) = s5.

The remaining values γA(s2), γA(s4) and γB(s1), γB(s3), γB(s5) can be chosen arbitrarily, as these actions
affect neither state transitions nor costs.

d) (bonus) Now instead of having players minimize their own cost, suppose they aim to minimize the sum of
both their total costs, i.e. the social cost. Write down a strategy γ̂A for Alice and γ̂B for Bob such that (γ̂A, γ̂B)
is a subgame perfect equilibrium of this modified game. Hint: The strategies can be inferred directly by
looking at the graph. How does the social cost of (γ̂A, γ̂B) compare to that of (γA, γB)? (1 point)
Solution:
In this case, any pair of strategies that leads to choosing the overall shortest path from each node to s6
constitutes a subgame perfect equilibrium. Such strategies must satisfy

γ̂A(s1) = s3,
γ̂A(s3) = s4,
γ̂A(s5) = s6,

and

γ̂B(s2) = s4,
γ̂B(s4) = s6.

The remaining values γ̂A(s2), γ̂A(s4) and γ̂B(s1), γ̂B(s3), γ̂B(s5) can be chosen arbitrarily, as these actions
affect neither state transitions nor costs. The social cost of (γ̂A, γ̂B) is 7 and thus strictly lower than the
social cost of (γA, γB) which is 11.
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